Bài 5. Các Mạch Điện Tử Cơ bản

1 - Mạch khuếch đại

    1.1 - Khái niệm về mạch khuyếh đại .

    Mạch khuyếch đại được sử dụng trong hầu hết các thiết bị điện tử, như mạch khuyếch đại âm tần trong Cassete, Âmply, Khuyếch đại tín hiệu video trong Ti vi mầu  v.v ...

    Có ba loại mạch khuyếch đại chính là :

  • Khuyếch đại về điện áp : Là mạch khi ta đưa một tín hiệu có biên độ nhỏ vào, đầu ra ta sẽ thu được một tín hiệu có biên độ lớn hơn nhiều lần.
  • Mạch khuyếch đại về dòng điện : Là mạch khi ta đưa một tín hiệu có cường độ yếu vào, đầu ra ta sẽ thu được một tín hiệu cho cường độ dòng điện mạnh hơn nhiều lần.
  • Mạch khuyếch đại công xuất : Là mạch khi ta đưa một tín hiệu có công xuất yếu vào , đầu ra ta thu được tín hiệu có công xuất mạnh hơn nhiều lần, thực ra mạch khuyếch đại công xuất là kết hợp cả hai mạch khuyếch đại điện áp và khuyếch đại dòng điện làm một.

    1.2 -  Các chế độ hoạt động của mạch khuyếch đại.

     Các chế độ hoạt động của mạch khuyếch đại  là phụ thuộc vào chế độ phân cực cho Transistor, tuỳ theo mục đích sử dụng mà mạch khuyếch đại được phân cực để KĐ ở chế độ A,  chế độ B , chế độ AB hoặc chế độ C

         a) Mạch khuyếch đại ở chế độ A.
    
Là các mạch khuyếch đại cần lấy ra tín hiệu hoàn toàn giốn với tín hiệu ngõ vào

Mạch khuyếch đại chế độ A  khuyếch đại 
cả hai bán chu kỳ tín hiệu ngõ vào

     *  Để Transistor hoạt động ở chế độ A, ta phải định thiên sao cho  điện áp    UCE  ~  60% ÷ 70% Vcc.
    * Mạch khuyếch đại ở chế độ A  được sử dụng trong các mạch trung gian như khuyếch đại cao tần, khuyếch đại trung tần, tiền khuyếch đại v v..

      b) Mach khuyếch đại ở chế độ B.
   Mạch khuyếch đại chế độ B là mạch chỉ khuyếch đại một nửa chu kỳ của tín hiệu, nếu khuyếch đại bán kỳ dương ta dùng transistor NPN, nếu khuyếch đại bán kỳ âm ta dùng transistor PNP, mạch khuyếch đại ở chế độ B không có định thiên.

Mạch khuyếch đại ở chế độ B chỉ khuyếch 
đại một bán chu kỳ của tín hiệu ngõ vào.

     * Mạch khuyếch đại chế độ B thường được sử dụng trong các mạch khuếch đại công xuất đẩy kéo như công xuất âm tần, công xuất mành của Ti vi, trong các mạch công xuất đẩy kéo , người ta dùng hai đèn NPN và PNP mắc nối tiếp , mỗi đèn sẽ khuyếch đại một bán chu kỳ của tín hiệu, hai đèn trong mạch khuyếch đại đẩy kéo phải có các thông số kỹ thuật như nhau :

   * Mạch khuyếch đại công xuất kết hợp cả hai chế độ A và B .

Mạch khuyếch đại công xuất Âmply có : Q1 khuyếch đại ở 
chế độ A, Q2 và Q3 khuyếch đại ở chế độ B, Q2 khuyếch đại 
cho bán chu kỳ dương, Q3 khuyếch đại cho bán chu kỳ âm.

   c) Mạch khuyếch đại ở chế độ AB.
    Mạch khuyếch đại ở chế độ AB là mạch tương tự khuyếch đại ở chế độ B , nhưng có định thiện sao cho điện áp UBE sấp sỉ 0,6 V, mạch cũng chỉ khuyếch đại một nửa chu kỳ tín hiệu và khắc phục hiện tượng méo giao điểm của mạch khuyếch đại chế độ B, mạch này cũng được sử dụng trong các mạch công xuất đẩy kéo .

   d) Mạch khuyếch đại ở chế độ C 
   Là mạch khuyếch đại  có điện áp UBE được phân cự ngược với mục đích chỉ lấy tín hiệu đầu ra là một phần đỉnh của tín hiệu đầu vào,  mạch này thường sử dụng trong các mạch tách tín hiệu : Thí dụ mạch tách xung đồng bộ trong ti vi mầu.

Ứng dụng mạch khuyếch đại chế độ C trong
mạch tách xung đồng bộ Ti vi mầu.

  2 - Các kiểu mắc của Transistor

      2.1 - Transistor mắc theo kiểu E chung.

     Mạch mắc theo kiểu E chung có cực E đấu trực tiếp xuống mass hoặc đấu qua tụ xuống mass để thoát thành phần xoay chiều, tín hiệu đưa vào cực B và lấy ra trên cực C,  mạch có sơ đồ như sau :

Mạch khuyếch đại điện áp mắc kiểu E chung ,
Tín hiệu đưa vào cực B và lấy ra trên cực C

Rg : là điện trở ghánh , Rđt : Là điện trở 
định thiên, Rpa : Là điện trở phân áp .

      Đặc điểm của mạch khuyếch đại E chung.

  •  Mạch khuyếch đại E chung thường được định thiên sao cho điện áp UCE khoảng 60% ÷ 70 %  Vcc.

  • Biên độ tín hiệu ra thu được lớn hơn biên độ tín hiệu vào nhiều lần, như vậy mạch khuyếch đại về điện áp.

  • Dòng điện tín hiệu ra lớn hơn dòng tín hiệu vào nhưng không đáng kể.

  • Tín hiệu đầu ra ngược pha với tín hiệu đầu vào : vì khi điện áp tín hiệu vào tăng => dòng IBEtăng => dòng ICE tăng => sụt áp trên Rg tăng => kết quả là điện áp chân C giảm , và ngược lại khi điện áp đầu vào giảm thì điện áp chân C lại tăng  => vì vậy điện áp đầu ra ngược pha với tín hiệu đầu vào.

  • Mạch mắc theo kiểu E chung như trên được ứng dụng nhiều nhất trong thiết bị điện tử.

    2.2 - Transistor mắc theo kiểu C chung.

   Mạch mắc theo kiểu C chung có chân C đấu vào mass hoặc dương nguồn ( Lưu ý : về phương diện xoay chiều thì dương nguồn tương đương với mass ) , Tín hiệu được đưa vào cực B và lấy ra trên cực E , mạch có sơ đồ như sau :

Mạch mắc kiểu C chung , tín hiệu đưa 
vào cực B và lấy ra trên cực E

       Đặc điểm của mạch khuyếch đại C chung .

  • Tín hiệu đưa vào cực B và lấy ra trên cực E

  • Biên độ tín hiệu ra bằng biên độ tín hiệu vào : Vì mối BE luôn luôn có giá trị khoảng 0,6V do đó khi điện áp chân B tăng bao nhiêu thì áp chân C cũng tăng bấy nhiêu => vì vậy biên độ tín hiệu ra bằng biên độ tín hiệu vào .

  • Tín hiệu ra cùng pha với tín hiệu vào : Vì khi điện áp vào tăng => thì điện áp ra cũng tăng, điện áp vào giảm thì điện áp ra cũng giảm.

  • Cường độ của tín hiệu ra mạnh hơn cường độ của tín hiệu vào nhiều lần :  Vì khi tín hiệu vào có biên độ tăng => dòng IBE sẽ tăng  => dòng ICE cũng tăng gấp β lần dòng IBE vì 
          ICE =  β.IBE   giả sử Transistor có hệ số khuyếch đại β = 50 lần thì khi dòng IBE tăng 1mA => dòng ICE sẽ tăng 50mA, dòng ICE chính là dòng của tín hiệu đầu ra, như vậy tín hiệu đầu ra có cường độ dòng điện mạnh hơn nhiều lần so với tín hiệu vào.

  • Mạch trên  được ứng dụng nhiều trong các mạch khuyếch đại đêm (Damper), trước khi chia tín hiệu làm nhiều nhánh , người ta thường dùng mạch Damper để khuyếch đại cho tín hiệu khoẻ hơn . Ngoài ra mạch còn được ứng dụng rất nhiều trong các mạch ổn áp nguồn ( ta sẽ tìm hiểu trong phần sau )

      2.3 - Transistor mắc theo kiểu B chung.

  • Mạch mắc theo kiểu B chung có tín hiệu đưa vào chân E và lấy ra trên chân C , chân B được thoát mass thông qua tụ.

  • Mach mắc kiểu B chung rất ít khi được sử dụng trong thực tế.

Mạch khuyếch đại kiểu B chung , khuyếch 
đại về điện áp và không khuyếch đại về dòng điện.


 3 - Các kiểu ghép tầng

    3.1 - Ghép tầng qua tụ điện. 
        
* Sơ đồ mạch ghép tầng qua tụ điện

Mạch khuyếch đại đầu từ - có hai tầng khuyếch
đại được ghép với nhau qua tụ điện.

  • Ở trên là sơ đồ mạch khuyếch đại đầu từ trong đài Cassette, mạch gồm hai tầng khuyếch đại mắc theo kiểu E chung, các tầng được ghép tín hiệu thông qua tụ điện, người ta sử dụng các tụ C1 , C3 , C5  làm tụ nối tầng cho tín hiệu xoay chiều đi qua và ngăn áp một chiều lại, các tụ C2 và C4 có tác dụng thoát thành phần xoay chiều từ chân E xuống mass, C6 là tụ lọc nguồn.

  • Ưu điểm của mạch là đơn giản, dễ lắp do đó mạch được sử dụng rất nhiều trong thiết bị điện tử, nhược điểm là không khai thác được hết khả năng khuyếch đại của Transistor do đó hệ số khuyếch đại không lớn.

  • Ở trên là mạch khuyếch đại âm tần, do đó các tụ nối tầng thường dùng tụ hoá có trị số từ 1µF ÷ 10µF.

  • Trong các mạch khuyếch đại cao tần thì tụ nối tầng có trị số nhỏ khoảng vài nanô Fara.

    3.2 - Ghép tầng qua biến áp .
 
 
 * Sơ đồ mạch trung tần tiếng trong Radio sử dụng biến áp ghép tầng

Tầng Trung tần tiếng của Radio sử dụng biến áp ghép tầng.

  • Ở trên là sơ đồ mạch trung tần Radio sử dụng các biến áp ghép tầng, tín hiệu đầu ra của tầng này được ghép qua biến áp để đi vào tầng phía sau.

  • Ưu điểm của mạch là phối hợp được trở kháng giữa các tầng do đó khai thác được tối ưu hệ số khuyếch đại , hơn nữa cuộn sơ cấp biến áp có thể đấu song song với tụ để cộng hưởng khi mạch khuyếch đại ở một tần số cố định.

  • Nhược điểm : nếu mạch hoạt động ở dải tần số rộng thì gây méo tần số, mạch chế tạo phức tạp và chiếm nhiều diện tích.

      3.3 - Ghép tầng trực tiếp .

   * Kiểu ghép tầng trực tiếp thường được dùng trong các mạch khuyếch đại công xuất âm tần.

4 - Phương pháp kiểm tra một tầng khuếch đại

     4.1 - Trong các mạch khuyếch đại ( chế độ A )  thì phân cực như thế nào là đúng.

Mạch khuyếch đại được phân cực đúng.

  • Mạch khuyếch đại ( chế độ A) được phân cực đúng là mạch có 
     UBE ~ 0,6V  ;   UCE ~ 60%  ÷ 70% Vcc

  • Khi mạch được phân cực đúng ta thấy , tín hiệu ra có biên độ lớn nhất và không bị méo tín hiệu .

      4.2 -  Mạch khuyếch đại ( chế độ A ) bị phân cực sai.

Mạch khuyếch đại bị phân cực sai, điện áp UCE quá thấp

Mạch khuyếch đại bị phân cực sai, điện áp UCE quá cao .

  • Khi mạch bị phân cực sai ( tức là UCE quá thấp hoặc quá cao ) ta thấy rằng tín hiệu ra bị méo dạng, hệ số khuyếch đại của mạch bị giảm mạnh.

  • Hiện tượng méo dạng trên sẽ gây hiện tượng âm thanh bị rè hay bị nghẹt ở các mạch khuyếch đại âm tần.

     Phương pháp kiểm tra một tầng khuyếch đại.

  • Một tầng khuyếch đại nếu ta kiểm tra thấy UCE quá thấp so với nguồn  hoặc quá cao sấp sỉ bằng nguồn => thì tầng khuyếch đại đó có vấn đề.

  • Nếu UCE quá thấp thì có thể do chập CE( hỏng Transistor) , hoặc đứt Rg.

  • Nếu UCE quá cao ~ Vcc thì có thể đứt Rđt hoặc hỏng Transistor.

  • Một tầng khuyếch đại còn tốt thông thường có  :
                     
    UBE ~ 0,6V  ;   UCE ~ 60%  ÷ 70% Vcc

Bài 2 - Các mạch chỉnh lưu và ổn áp

 1 - Mạch chỉnh lưu điện xoay chiều

    1.1 -  Bộ nguồn  trong các mạch điện tử .

     Trong các mạch điện tử của các thiết bị như Radio -Cassette, Âmlpy, Ti vi mầu,  Đầu VCD v v... chúng sử dụng nguồn một chiều DC ở các mức điện áp khác nhau, nhưng ở ngoài zắc cắm của các thiết bị này lại cắm trực tiếp vào nguồn điện AC 220V 50Hz , như vậy các thiết bị điện tử cần có một bộ phận để chuyển đổi từ nguồn xoay chiều ra điện áp một chiều , cung cấp cho các mạch trên, bộ phận chuyển đổi bao gồm :

  • Biến áp nguồn :  Hạ thế từ 220V xuống các điện áp thấp hơn như 6V, 9V, 12V, 24V v v ...
  • Mạch chỉnh lưu : Đổi điện AC thành DC.
  • Mạch lọc  Lọc gợn xoay chiều sau chỉnh lưu cho nguồn DC phẳng hơn.
  • Mạch ổn áp : Giữ một điện áp cố định cung cấp cho tải tiêu thụ

Sơ đồ tổng quát của mạch cấp nguồn.

    1.2 - Mạch chỉnh lưu bán chu kỳ .

   Mạch chỉnh lưu bán chu kỳ sử dụng một  Diode mắc nối tiếp với tải tiêu thụ, ở chu kỳ dương => Diode được phân cực thuận do đó có dòng điện đi qua diode và đi qua tải, ở chu kỳ âm , Diode bị phân cực ngược do đó không có dòng qua tải.


  1.3 Mạch chỉnh lưu cả chu kỳ

      Mạch chỉnh lưu cả chu kỳ thường dùng 4 Diode mắc theo hình cầu (còn gọi là mạch chỉnh lưu cầu) như hình dưới.

  • Ở chu kỳ dương ( đầu dây phía trên dương, phía dưới âm) dòng điện đi qua diode D1 => qua Rtải => qua diode D4 về đầu dây âm

  • Ở chu kỳ âm, điện áp trên cuộn thứ cấp đảo chiều ( đầu dây ở trên âm, ở dưới dương) dòng điện đi qua D2 => qua Rtải => qua D3 về đầu dây âm.

  • Như vậy cả hai chu kỳ đều có dòng điện chạy qua tải

2 - Mạch lọc và mạch chỉnh lưu bội áp

     2.1 - Mạch lọc dùng tụ điện.  

   Sau khi chỉnh lưu ta thu được điện áp một chiều nhấp nhô, nếu không có tụ lọc thì điện áp nhấp nhô này chưa thể dùng được vào các mạch điện tử , do đó trong các mạch nguồn, ta phải lắp thêm các tụ lọc có trị số từ vài trăm µF đến vài ngàn  µF vào sau cầu Diode chỉnh lưu.

Dạng điện áp DC của mạch chỉnh lưu 
trong hai trường hợp có tụ và không có tụ

  • Sơ đồ trên minh hoạ các trường hợp mạch nguồn có tụ lọc và không có tụ lọc.

  • Khi công tắc K mở, mạch chỉnh lưu không có tụ lọc tham gia , vì vậy điện áp thu được có dạng nhấp nhô.

  • Khi công tắc K đóng, mạch chỉnh lưu có tụ C1 tham gia lọc nguồn , kết quả là điện áp đầu ra được lọc tương đối phẳng, nếu tụ C1 có điện dung càng lớn thì điện áp ở đầu ra càng bằng phẳng, tụ C1 trong các bộ nguồn thường có trị số khoảng vài ngàn µF .

Minh hoạ : Điện dụng của tụ lọc càng lớn 
thì điện áp đầu ra càng bằng phẳng.

  • Trong các mạch chỉnh lưu, nếu có tụ lọc mà không có tải hoặc tải tiêu thụ một công xuất không đáng kể so với công xuất của biến áp thì điện áp DC thu được là   DC = 1,4.AC 

    2.2 -  Mạch chỉnh lưu nhân 2 

Sơ đồ mạch nguồn chỉnh lưu nhân 2

  • Để trở thành mạch chỉnh lưu nhân 2 ta  phải dùng hai tụ hoá cùng trị số mắc nối tiếp, sau đó đấu 1 đầu của điện áp xoau chiều vào điểm giữa hai tụ  => ta sẽ thu được điện áp tăng gấp 2 lần.

  • Ở mạch trên, khi công tắc K mở, mạch trở về dạng chỉnh lưu thông thường .

  • Khi công tắc K đóng, mạch trở thành mạch chỉnh lưu nhân 2, và kết quả là ta thu được điện áp ra tăng gấp 2 lần.

3 - Mạch ổn áp cố định

     3.1 - Mạch ổn áp cố định dùng Diode Zener.

Mạch ổn áp tạo áp 33V cố định cung cấp 
cho mạch dò kênh trong Ti vi mầu

  • Từ nguồn 110V không cố định thông qua điện trở hạn dòng R1 và gim trên  Dz 33V để lấy ra một điện áp cố định cung cấp cho mạch dò kệnh
  • Khi thiết kế một mạch ổn áp như trên ta cần tính toán điện trở hạn dòng sao cho dòng điện ngược cực đại qua Dz phải nhỏ hơn dòng mà Dz chịu được, dòng cực đại qua Dz là khi dòng qua R2 = 0
  • Như sơ đồ trên thì dòng cực đại qua Dz bằng sụt áp trên R1 chia cho giá trị R1 , gọi dòng điện này là I1 ta có

I1 = (110 - 33 ) / 7500 = 77 / 7500  ~ 10mA

Thông thường ta nên để dòng ngược qua Dz  ≤ 25 mA

    3.2 -  Mạch ổn áp cố định dùng Transistor, IC ổn áp .

   Mạch ổn áp dùng Diode Zener như trên có ưu điểm là đơn giản nhưng nhược điểm là cho dòng điện nhỏ ( ≤ 20mA ) . Để có thể tạo ra một điện áp cố định nhưng cho dòng điện mạnh hơn nhiều lần người ta mắc thêm Transistor để khuyếch đại về dòng như sơ đồ dưới đây.

Mạch ổn áp có Transistor khuyếch đại

  • Ở mạch trên điện áp tại điểm A có thể thay đổi và còn gợn xoay chiều nhưng điện áp tại điểm B không thay đổi và tương đối phẳng.

  • Nguyên lý ổn áp : Thông qua điện trở  R1 và Dz gim cố định điện áp chân B của Transistor Q1,  giả sử khi điện áp chân E đèn Q1 giảm => khi đó điện áp UBE tăng => dòng qua đèn Q1 tăng => làm điện áp chân E của đèn tăng , và ngược lại ...

  • Mạch ổn áp trên đơn giản và hiệu quả nên được sử dụng rất rộng dãi và người ta đã sản xuất các loại IC họ LA78.. để thay thế cho mạch ổn áp trên, IC LA78.. có sơ đồ mạch như phần mạch có mầu xanh của sơ đồ trên.

IC ổn áp họ LA78

  • LA7805                 IC ổn áp 5V

  • LA7808                 IC ổn áp 8V

  • LA7809                 IC ổn áp 9V

  • LA7812                 IC ổn áp 12V

    Lưu ý : Họ IC78.. chỉ cho dòng tiêu thụ khoảng 1A trở xuống, khi ráp IC trong mạch thì  U in > Uout từ 3 đến 5V khi đó IC mới phát huy tác dụng.

      3.3 - Ứng dụng của IC ổn áp họ 78..

  IC ổn áp họ 78.. được dùng rộng rãi trong các bộ nguồn , như Bộ nguồn của đầu VCD, trong Ti vi mầu, trong máy tính v v

Ứng dụng của IC ổn áp LA7805 và 
LA7808 trong bộ nguồn đầu VCD

  4 - Mạch ổn áp tuyến tính (có hồi tiếp)

      4.1 - Sơ đồ khối của mạch ổn áp có hồi tiếp .

Một số đặc điểm của mạch ổn áp có hồi tiếp :

  • Cung cấp điện áp một chiều ở đầu ra không đổi trong hai trường hợp điện áp đầu vào thay đổi hoặc dòng tiêu thụ của tải thay đổi , tuy nhiên sự thay đổi này phải có giới hạn.

  • Cho điện áp một chiều đầu ra có chất lượng cao, giảm thiểu được hiện tượng gợn xoay chiều.

    *   Nguyên tắc hoạt động của mạch.

  • Mạch lấy mẫu sẽ theo dõi điện áp đầu ra thông qua một cầu phân áp tạo ra ( Ulm : áp lấy mẫu)

  • Mạch tạo áp chuẩn => gim lấy một mức điện áp cố định (Uc : áp chuẩn )

  • Mạch so sánh sẽ so sánh hai điện áp lấy mẫu Ulm và áp chuẩn Uc để tạo thành điện áp điều khiển.

  • Mạch khuếch đại sửa sai sẽ khuếch đại áp điều khiển, sau đó đưa về điều chỉnh sự hoạt động của đèn công xuất theo hướng ngược lại, nếu điện áp ra tăng => thông qua mạch hồi tiếp điều chỉnh => đèn công xuất dẫn giảm =>điện áp ra giảm xuống . Ngược lại nếu điện áp ra giảm => thông qua mạch hồi tiếp điều chỉnh => đèn công xuất lại dẫn tăng => và điện áp ra tăng lên   =>> kết quả điện áp đầu ra không thay đổi.